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Abstract 

 
Human activity recognition is widely used in smart homes, health care and indoor monitor. 
Traditional approaches all need hardware installation or wearable sensors, which incurs 
additional costs and imposes many restrictions on usage. Therefore, this paper presents a novel 
device-free activities recognition system based on the advanced wireless technologies. The 
fine-grained information channel state information (CSI) in the wireless channel is employed 
as the indicator of human activities. To improve accuracy, both amplitude and phase 
information of CSI are extracted and shaped into feature vectors for activities recognition. In 
addition, we discuss the classification accuracy of different features and select the most stable 
features for feature matrix. Our experimental evaluation in two laboratories of different size 
demonstrates that the proposed scheme can achieve an average accuracy over 95% and 90% in 
different scenarios. 
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1. Introduction 

With the rapid development of wireless sensing technology, a series of Wi-Fi based human 
activities recognition systems are proposed [13-16]. Compared to traditional indoor human 
activities detection systems, which use smartphones [1, 2], cameras [3, 4], accelerometer [5-7] 
or wearable sensors [8-10], Wi-Fi signal based systems have some advantages. First, Wi-Fi 
based solutions are device-free and users do not need to wear any sensors. Second, compared 
to cameras, Wi-Fi signals have better coverage and can still work in poor lighting conditions. 
Third, Wi-Fi based solutions will not cause privacy intrusion on users. 
 

 
Fig. 1. Wi-Fi signal propagation in indoor environment. 

 
The basis of Wi-Fi signal perception is the disturbance of human body on wireless signals. 

As illustrated in Fig. 1, the signal transmission paths change significantly when a human 
activity happens, so we can observe the impact of these multipath propagation by analyzing 
the received signals. Moreover, different human activities introduce different multi-path 
distortions on Wi-Fi signals, which can be used to distinguish corresponding activities. 
Received signal strength (RSS) of media access control (MAC) layer is utilized as a 
monitoring indicator in the early effort. However, it experiences severe performance 
degradation in complex environments due to temporal variations and signal reflections [11], 
and this will limit RSS to only be applied for recognizing coarse-grained activities. Fortunately, 
the channel state information (CSI) which can be extracted from off-the-shelf Wi-Fi devices 
provides fine-grained information [12]. Compared with RSS, each orthogonal frequency 
division multiplexing (OFDM) subcarrier of CSI consists of amplitude and phase information 
which is more fine-grained and can be used as the indicator of multi-path changes caused by 
human body. 

In this paper, we propose a fine-grained activity detection system to implement the 
recognition of daily activities. Activities of daily living (ADL) refers to a series of basic 
activities that are necessary for people to take care of themselves in daily life. The 
identification of ADL is of great significance for health care and indoor personnel monitoring. 
As a result, our experiments take a number of ADL and divide them into two main categories: 
upper body movements (i.e. drinking water) and full-body movements (i.e. walking). In 
addition, since our system is designed for patients in hospital wards, prisoners in prisons and 
elderly people living alone, our experiments are mainly based on the scenarios in which no one 
moves except the target person. To achieve this, we focus on how different features describe 
human activities and select more sensitive features to construct feature matrix. We firstly pass 
the raw CSI data to the pre-processing module to eliminate significant random noise and 
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obtain useful phase information. Afterwards, we utilize principal component analysis (PCA) 
method on 30 subcarriers to extract principal components for feature extraction. Finally, we 
introduce machine-learning algorithms including the support vector machine (SVM), random 
forest (RF), and K-nearest neighbor (KNN) for activity classification. 

In summary, the main contributions of our work are as follows:  
(1) In addition to amplitude information, we derive the phase information from raw CSI 

through a linear transformation. 
(2) Principal component analysis method is applied to solve the problem of subcarrier 

selection for correlated activity recognition. The basis of our selection is the contribution 
rate of current subcarriers. 

(3) We extract multiple features from CSI amplitude and phase to discuss the performance of 
different features on human activities, and then select features that best describe human 
activities for feature matrix. 

(4) We analyze some key factors such as the kind of features and the number of principal 
components to summarize how they affect the detection accuracy. 

(5) The experiments are carried out in two different scenarios and the performance of the 
system in different scenarios is verified in section 6. 
The rest of this paper is organized as follows. We review the related works in the field of 

human activities recognition in Section 2. In Section 3, we briefly introduce some 
preliminaries about CSI. Section 4 presents an overview of the system architecture. 
Implementation of our system and experiment evaluation are presented in Section 5 and 
Section 6. Section 7 discusses the application of the system. Finally, Section 8 concludes the 
paper. 

2. Related Work 
Wi-Fi based activities detection systems have made a lot of progress in recent years, 

which is mainly divided into two types: RSS-based systems and CSI-based systems. 
RSS-based systems: The RSS-based systems mainly take advantage of the changes of 

received signal strength (RSS) caused by human activities. Sigg S et al. propose the 
software-defined-radio (SDR)-based device-free activity recognition (DFAR) system [13]. 
This system leverages the localization of activities performed, the characteristics of 
environment and the difference of walking speeds to realize activity recognition. [14] explores 
the influence of human activities on RSS, and achieves the average recognition ratio (from 
75% to 92.58%) with proposed fusion algorithm. RSS can also be used for gesture recognition. 
[15] uses the RSS at a mobile phone for recognition and achieves an accuracy of 51% when 
distinguishing 11 gestures and can reach 72% for four gestures. Wi-Gest can extract the three 
changes of rise, fall and pause according to the influence of different gestures on RSS 
waveform to build different gesture clusters, and map these gesture clusters to different 
application operations to achieve gesture recognition [16]. However, RSS is easily interfered 
by the environment, which is more suitable for recognizing some coarse-grained activities 
(such as sitting, walking, etc.). Compared to RSS-based systems, our system can identify more 
fine-grained activities and achieve higher recognition accuracy. 

CSI-based systems: Researchers have been seeking for more stable information that can 
be used for passive human detection due to the unsatisfactory application of RSS. Since [12] is 
published, a series of CSI-based activities detection systems have been proposed [17, 19-21, 
26, 31]. Compared with RSS, CSI can be a more fine-grained signal feature, which 
characterizes the multipath effect at the granularity of the OFDM subcarrier in the frequency 
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domain [18]. CSI-based activity recognition systems also leverage variations in signal 
measurement which is similar to RSS-based systems. Wi-Fall describes the indoor radio signal 
transmission model under the interference of human activities, verifying the feasibility of CSI 
for activities detection [17]. In addition, it utilizes the time stability and frequency diversity of 
CSI for fall detection. E-eyes extracts CSI amplitude information to detect walking and 
in-place activities, and uses CSI histogram as fingerprint information to detect daily human 
activities [19]. To analyze the relationship between human activities and CSI changes, CARM 
proposes CSI-speed and CSI-activity models, and then extracts feature information for 
classification using discrete wavelet transform (DWT) method [26]. In these studies, only 
amplitude information provided by CSI is used instead of considering the phase information. 
Feng et al. propose Wi-chase, which utilizes all 30 subcarriers to realize activities 
classification [21]. However, Wi-chase only classifies three simple activities, such as walking, 
rather than multiple fine-grained activities. In [31], a device-free system is proposed to 
identify seven activities of older persons. Unlike Wi-chase and the system in [31], our dataset 
contains more human activities. 

Moreover, since these studies neglect to discuss how the extracted features represent 
human activities, in this paper, we leverage both CSI amplitude and phase information for 
feature extraction and discuss the performance of different features. 

3. Channel State Information 
CSI is fine-grained information in the physical (PHY) layer, which describes the channel 

properties of the communication link, including scatter, environmental attenuation, distance 
attenuation and other information. In the Wi-Fi OFDM system, the effects of multipath can be 
effectively reduced, and channel impulse response (CIR) between the transmitter and receiver 
is parsed from the PHY layer in the form of CSI. In a narrow-band flat fading channel, CSI can 
be expressed in the frequency domain as 

 y Hx n= +  (1) 
Where y, x, n and H represent the received vector, the transmission vector, the noise 

matrix and the channel matrix respectively. 
In OFDM system, 56 subcarriers can be used for data transmission with a 20 MHz 

bandwidth channel. However, the Intel 5300 NIC can only capture 30 subcarriers [12], which 
can be expressed as 

 
1 2[ , ,..., ,..., ]i NH H H H H=  

 
(2) 

Where N is the number of subcarriers, and each Hi describes the amplitude and phase 
information of one OFDM subcarrier. 

4. Overview 
Our proposed system leverages CSI to indicate the human activities in indoor 

environments and realize different daily activities recognition. Fig. 2 gives an overview of the 
system, which is consisted of four modules: sensing, data pre-processing, subcarriers selection 
and activities recognition. First, the raw CSI data is extracted from commercial Wi-Fi devices 
in the sensing module, and then we feed raw CSI streams into data pre-processing module to 
filter the noise and outliers. In the activity recognition module, we extract features from the 
phase and amplitude information respectively. Finally, these features are passed to the 
machine-learning algorithms to realize activities classification. 
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The core of our system is the construction of features matrix. The system distinguishes 
between full-body activities and upper body activities and the performance of extracted 
features differ in different type of activities. In general, a full-body activity (such as walking 
and running) causes significant pattern changes of the CSI amplitude over time because of its 
significant body movements. An upper body activity (such as throwing debris) only involves 
upper body movements, which will not cause significant amplitude changes. Moreover, we 
use the phase and amplitude information as indicators, and the performance of features is also 
different under different indicators. Therefore, to improve the identification accuracy and 
efficiency of the system, we select multiple features to construct feature matrix through 
multi-angle analysis and extensive experimental evaluation. 

 

 
Fig. 2. Overview of System Architecture. 

5. Methodology 
In this section, we will elaborate on the overall design of the system. First, in the sensing 

module, we collect the raw CSI data in thirty subcarriers and nine streams. Next, in the data 
pre-processing module, the CSI phase information is extracted through a liner transformer. 
Meanwhile, the noise and outliers of CSI amplitude information are filtered by Hampel filter 
and median filter [24]. Since the CSI contains thirty subcarriers and these subcarriers are 
relatively similar, we apply PCA method on thirty subcarriers to obtain the most meaningful 
subcarriers in subcarriers selection module. Finally, in activity recognition module, we extract 
different features as input of machine-learning algorithm. 

5.1 Data Pre-processing  
Since the collected raw CSI data contains a lot of noise, in this part, raw CSI will be 

preprocessed for next work. According to Section 3, the raw CSI data includes phase and 
amplitude information. We extract the phase and amplitude information respectively, and then 
remove the noise using a series of filters. 
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5.1.1 Phase Sanitization  
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(a)                                                               (b) 

Fig. 3. Phase sanitization. (a) Raw phase, (b) Phase after sanitization 
 

Although CSI has been widely utilized for various applications, most of them only 
consider the amplitudes of CSI, and phase information does not attract enough attention, the 
reason of which is the synchronization error between the transmitter and receiver cannot be 
completely eliminated. The CSI information received at the receiver contains both the residual 
error of the carrier frequency synchronization and the clock synchronization error, which will 
have great influence on the phase information. Thus, in this section, we employ a linear 
transformation on the raw phase readings to obtain available phase information for activities 
detection [22]. The measured CSI phase îφ  in the ith subcarrier can be expressed as follows 

 ˆ = 2 i
i i

k Z
N

φ φ π δ β− + +  
 

(3) 

Where îφ  and iφ  represent the measured CSI phase and the true phase values of the ith 
subcarrier, respectively. δ represents the time difference between receiver and transmitter. β is 
the phase deviation caused by the unsynchronization of the center frequency at the receiver 
and transmitter, and Z is Gaussian noise. ki ranging from -28 to 28 denotes the index of the 30 
subcarriers. N is the fast Fourier transform (FFT) size. As shown in Fig. 3(a), the raw CSI 
phase information is disorganized and unusable. To reduce the influence of β and δ, a linear 
transformation recommended in [23] is used on the raw phase information. The slope and 
intercept of the linear transformation equation are defined as a and b respectively. 
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Since the frequency of subcarriers is symmetric [12], 
1
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Where îφ  and iφ  denote the measured CSI phase and the approximate true phase. It is 
found that β and δ have been eliminated from the equation after using a linear transformation. 
Compared to Fig. 3(a), the phase in Fig. 3(b) distributes relatively stable as expected.  

5.1.2 Outlier Filter  

It is found that there are always some outliers in the collected CSI data, which are 
obviously not caused by human activities. As shown in Fig. 4(a), the amplitude information of 
raw CSI data extracted from the static environmen contains many outliers. Even in the 
non-human scenario, the collected signals contain a lot of ambient noise. We apply a Hampel 
filter to remove these deviated outliers, which classifies all points outside the closed interval 
[μ-γ*σ, μ+γ*σ] as outliers [24]. Where μ and σ are the median and the median absolute 
deviations (MAD) respectively. γ is set to 3 in this paper according to the actual application 
setting. The amplitude of the CSI after removing outliers is shown in Fig. 4(b). It can be seen 
that the Hampel filter can effectively remove these outliers. To avoid signal fluctuations at the 
beginning and end of data collection, and fully capture the motion information, including the 
preparation and end of the motion, we set the size of the time window to 20 seconds. 
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(a)                                         (b)                                           (c) 

Fig. 4. Noise filtering for CSI amplitude. (a) Raw CSI amplitude, (b) CSI after Hampel filtering, (c) 
10-poingts after median filtering. 

 

5.1.3 Noise Filtering 

After removing outliers, ambient noise will also be removed. Frequency domain 
approaches like low-pass filter (e.g. Butterworth) is employed at first time. However, we find 
that there is still some noise when the cut-off frequency of low-pass filters (LPF) is not small 
enough, and some meaningful information will be filtered out when the cut-off frequency is 
too small. As a result, in this paper, we apply a median filter to remove the environment noise. 
Median filter (MF) uses the means as the filtered value after removing a maximum and a 
minimum in a sliding window. Therefore, compared with LPF, MF can avoid noise residue and 
information loss generated from improper cut-off frequency setting. We apply 10-poingts 
median filter on CSI amplitude after Hampel filtering in Fig. 4(b). The result after median 
filtering is illustrated in Fig. 4(c). 

5.2 Principal Component Analysis (PCA) and Subcarriers Selection 
Principal Component Analysis (PCA) method is a common method of data dimension 

reduction [25]. Dimensionality reduction is a kind of dataset pre-processing technology, which 
can make data processing simpler and more efficient while minimizing the loss of information. 
Moreover, since random noise will not cause the change of signal principal components (PCs), 
PCA also can remove signal noise at the same time. 
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There are 30 subcarriers in each CSI stream, and most of subcarriers are correlated to 
some extent [26]. If they are all used for feature extraction, the calculation will be too heavy. 
As a result, PCA is used to select the principal components containing the most activity 
information.  

In PCA, the filtered CSI information is taken as input to calculate the covariance matrix 
of the centralized data [27]. Then the matrix is decomposed into eigenvectors and the 
eigenvectors are sorted in descending order so that the larger eigenvectors come first. After 
obtaining the eigenvectors, we determine the first few principal components by calculating 
their contribution rates (CRate). 

The eigenvectors whose CRate are more than C% can be screened out by the above 
equation, and then the corresponding principal components can be obtained. Fig. 5(b) shows 
the CSI fluctuation of first 2 principal components (CRate is set as 95%), which removes a lot 
of redundant information compared to Fig. 5(a). In our experiment, we apply PCA on all 30 
subcarriers and select the subcarriers corresponding to eigenvectors with large variance 
according to CRate. In our later experimental evaluation, it is found that the best result is 
achieved when we select the first five subcarriers (i.e., when the CRate is set to about 90%). 
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                             (a)                                                                  (b)   
 

Fig. 5. Principle Components Analysis (PCA) on CSI amplitude.  
(a) Raw CSI amplitude, (b) The first two PCs. 

 

5.3 Activity Recognition 

This section focuses on human activities recognition algorithm in the system. We will 
explain the construction of features matrix and the machine learning algorithms used for 
activities classification. 

5.3.1 Constructing Feature Matrix 
In this part, we will elaborate on the construction process of feature matrix. The feature 

matrix determines the final performance of activity recognition. Selecting suitable features can 
ensure the accuracy of classification and avoid excessive data processing time. In the previous 
work, the amplitude and phase information of filtered CSI have been obtained. We extract 
features from the amplitude and phase information respectively, and combine the features that 

 Sum of selected eigenvectors
Sum of all eigenvectors

CRate =  
 

(7) 
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are significantly different into eigenvectors by analyzing the similarity between these features. 
In addition, the differences of amplitude and phase features are not exactly the same, so we 
analyze these features separately. A sliding window method is applied across CSI to calculate 
the following features. 

 
1) Variance: One feature is variance 2 ( )kσ  that is a measure of the dispersion of a set of 

data. The variance of CSI value xi in the kth sliding window of length n can reflect the degree of 
change of CSI caused by human activities. Mathematically it can be expressed as 

 
Where μ is the mean value of in the kth sliding window and k∈(1, N) represents the 

number of sliding windows. 
2) Normalized standard deviation (STD): The second feature is STD ( )kσ . Compared 

with variance, STD is more intuitive to describe the degree of deviation between data and 
mean value. We can formula STD as 

3) Median absolute deviation (MAD): The third feature in our system is median absolute 
deviation MAD(k). MAD represents the variability in human activity. It can be expressed as 

 
1

1( ) | |n
ii

MAD k x
n

µ
=

= −∑  
(10) 

4) Interquartile range (IR): The fourth feature is the interquartile range (IR) P25(k). IR is 
the value at third segmentation points after CSI in the window are arranged from small to large 
and divided into four equal parts. Mathematically, it can be calculated by 

 
25

25( ) ( )
100

P k x n= ⋅  
(11) 

5) The offset of signal strength (Offset): The fifth feature is the offset of signal strength 
offset(k). Human activities also can cause changes in signal strength, and the offset can reflect 
these changes. It can be expressed as following. 

 1( ) | |n
ii

offset k x
n

= ∑  
(12) 

6) Signal entropy (SE): The last feature is signal entropy SE(k). This serve as an 
important feature to distinguish between different types of human activities. We first figure out 
the probability distribution of the signal and then we calculate the signal entropy. The 
mathematical equation is as follows. 

 
21

( ) ( ) log ( )n
i ii

SE k p x p x
=

= − ⋅∑  (13) 

Where p(xi) is the probability distribution of CSI. 

 2 21( ) ( )n
ii

k x
n

σ µ= −∑
 

 
(8) 
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k x
n

σ µ
=

= −∑  
 

(9) 
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Fig. 6. Features extracted from amplitude of picking hat and running. 

 
Our experiment mainly includes the full-body movements (i.e. running) and upper body 

movements (i.e. picking hat). To select more representative features, we analyze the 
performance of all the features from full-body movement and upper body movement at the 
same time. Fig. 6 shows the amplitude features extracted from running and picking hat. It can 
be seen that the most of the features in Fig. 6 fluctuate slightly around 0. Among them, the 
offset fluctuates more significantly and has completely different patterns of fluctuation 
compared with other features. Therefore, offset is taken as one of our amplitude features. In 
addition, the remaining five features change similarly with the implementation of human 
activity. We select the signal entropy which includes more human activities information. Then 
we extract phase features to observe the performance of these features, which is shown in Fig. 
7. It presents that the signal entropy, offset and interquartile range fluctuate significantly than 
other features. Meanwhile, there is little correlation between their fluctuations. Therefore, we 
finally select SE and offset extracted from amplitude information and IR, SE, and offset 
extracted from phase information. In addition, we also used a useful feature, the duration of 
human moving (duration), which illustrates the duration of a human activity.  

 

0 1 2 3 4 5 6
Picking Hat                                                                                   Running

Time(s)

-2

-1

0

1

2

3

Ph
as

e 
Fe

at
ur

es

SE

STD

Offset

IR

MAD

Variance

 
Fig. 7. Features extracted from phase of picking hat and running. 

 
Meanwhile, our system is not limited to one person, but to different subjects for activity 

identification. How to distinguish similar actions made by different subjects has also become a 
problem to be studied. Since the experimental subjects have different heights and volumes, 
their influence on the line-of-sight (LOS) path is also quite different, and each subject will 
cause different reflection paths, which also leads to differences in the collected CSI data. 
Therefore, even if the subjects take similar actions, it can still be distinguished. At the same 
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time, in order to verify that the features we extract can show the differences in the actions of 
different people, we compared the picking hat action of three subjects, as shown in Fig. 8. Fig. 
8(a) and Fig. 8(b) represent the amplitude features that we selected and the rest is the phase 
feature. Fig. 8(c), Fig. 8(d) and Fig. 8(e) in the figure represent different subjects. It is 
illustrated from the figure that even if the experimental subjects take same actions, the features 
we extract from the action also have certain differences, which helps us to distinguish similar 
actions of different subjects. 
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Fig. 8. Features extracted from picking hat activity. (a) Offset from amplitude, (b) SE from amplitude, (c) 
Offset from phase, (d) IR from phase, (e) SE from phase. 

 

5.3.2 Activity Classification 
To realize activity classification, we use support vector machine (SVM) as classification 

algorithm [28]. SVM is a useful technique for data classification, which maps input vector 
nonlinear to a very high-dimensional feature space, and constructs a linear decision surface. 
The special properties of this surface can ensure that the learning machine has high 
generalization ability. The kernel function is used to map the input vector to the 
high-dimensional feature space and then the maximum edge hyperplane in the transformed 
feature space can be found. 

We utilize libsvm toolbox to build our SVM classification model [29]. The extracted 
features and corresponding labels are used as input of SVM classifier to construct the SVM 
classification model. In addition, Gaussian kernel function is used to solve nonlinear 
classification problem [30]. 

Meanwhile, two other classification algorithms (KNN and RF) are compared with SVM 
for better classification effect. KNN is a common algorithm in wireless signal location, and we 
consider using it in activities recognition to see the classification effect. The core idea of KNN 
is that if most of the K most adjacent samples of a sample in the feature space belong to a 
certain category, then the sample also belongs to this category and has the characteristics of 
samples in this category. In [31], the author uses three different machine-learning algorithms 
for activity recognition, including RF, SVM and Naive Bayes. Among them, RF achieves 
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higher recognition accuracy. Therefore, RF is also applied in our experiment. The basic unit of 
RF is decision tree, each decision tree is a classifier. Different decision trees may have 
different classification results, and RF algorithm integrates these classification results to 
specify the category with the most votes as the final output.  

6. Evaluation 
In this section, we present the implementation and evaluation results of our human 

activity detection system using commercial off-the-shelf Wi-Fi devices. 
 

6.1 Experimental Setups  
 

             
(a)                                                       (b) 
 
 

 
                                                                 (c) 
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                                                                   (d) 

Fig. 9. Photographs and layouts of the two experiment. (a) Experimental scenario of the 1st experiment, 
(b) Experimental scenario of the 2nd experiment, (c) Layout of 1st experiment, (d) Layout of the 2nd 

experiment. 

6.1.1 Experimental Environments 
We perform our detection system using an 802.11n Wi-Fi network consisting of an 

off-the-shelf Wi-Fi devices (laptop) and a commodity wireless access point (i.e., D-Link 
DIR-859 Router with three antennas). The laptop is installed Ubuntu 14.04 system with a 
modified Intel NIC driver. 

The software that is used in our experiments is the open source CSI-Tool presented by 
Halperin et al. [12], and Matlab is used to analyze the collected data. Since there exist other 
wireless devices working in 2.4GHz in the laboratory, we run our experiment in 5GHz 
frequency to avoid interference from other devices. Moreover, we set the sampling frequency 
to 100Hz in order to fully capture CSI information caused by human activities. 

To verify the scalability of our system in different environments, we conduct our 
experiments in two different laboratories. As shown in Fig. 9(c), the length and width of the 
first laboratory is given, which is surrounded by many experimental equipment and desks. The 
location of AP and MP is shown in Fig. 9(a). Moreover, the second laboratory is 13.8m in 
length and 6.6m in width, and is more crowded with relatively more multipath. The AP and 
MP are located between the cabinets and the desks, as shown in Fig. 9(d). 

6.1.2 Dataset 
We recruit five volunteers (ages 22 to 32; two women and three men; weight: 48-105kg; 

height: 1.62-1.85m) to perform various daily activities in the two test environments over one 
months. The collected data includes upper body activities and full-body activities. Finally, we 
get 1600 samples listed in Table 1. 

 
Table 1. Summary for activity dataset. 

Activity Samples 
Walk (W) 200 

Pick hat (P) 200 
Throw debris (T) 200 

Sit down (SD) 200 



2390                                                  Ding et al.: A Robust and Device-Free Daily Activities Recognition System using Wi-Fi Signals 

Drink water (D) 200 
Wave arm (W) 200 

Run (R) 200 
Sleep (SP) 200 

6.2 Performance Evaluation 
In this section, we first evaluate the overall performance of our system and its robustness 

under different experimental conditions. 

6.2.1 Evaluation Metrics 
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(a)                                                         (b) 

Fig. 10. (a) A confusion matrix for the classification of a person's different activities, (b) The confusion 
matrix for the classification of similar activities of five people. 

 
Fig. 10 shows the confusion matrix of the eight activities. Each row in the matrix 

represents the true category of the activity, and each column represents the predicted category 
by our system. Fig. 10(a) shows the result in the case of a single person. It can be seen that the 
average classification accuracy of our system is 0.95. The high classification rate is 0.99 
(sleeping and throwing debris), the reason of which is that these two activities have special 
modes of execution. In contrast, the lowest rate is 0.84 (walking), because walking may be 
incorrectly identified as running. Meanwhile, our system is also applied to all the data 
collected from the five objects. As shown in Fig. 10(b), we classify eight similar activities of 
five people and achieve a certain degree of accuracy. 

Moreover, we have calculated the three parameters of Precision, Recall and F-score to 
evaluate the performance of the system. These three parameters are calculated as follows: 
 

Precision TP
TP FP

=
+

 
 

(14) 
 

Recall TP
TP FN

=
+

 
 

(15) 
 Precision RecallF-score 2

Precision+Recall
×

= ×

 

 
(16) 

Where TP, FP and FN are the true positive, false positive and false negative respectively. 
As shown in Fig. 11, we compare the result of the precision, recall and F1 score of the eight 
experimental activities with Wi-chase [21] and Wi-Fall [17], which shows that the three rate of 
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our system are about 0.95 while the results of Wi-chase and Wi-Fall are not good enough. This 
is because that Wi-chase only uses a few mathematical features that inadequately represent 
movement changes and it may be better suited to identifying a small number of simple 
activities than to our data set. As for Wi-Fall, it neglects to take full advantage of the phase 
information. Compared with Wi-chase and Wi-Fall, in our system, features that can better 
describe human activities are selected to form the feature matrix and we can get more useful 
information for classification.  
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Fig. 11. Precision, Recall and F-measure results.       Fig. 12. Detection accuracy with different basic  

                                                                                   Signals 
 

To verify the validity of phase information, the classification accuracy is compared in 
three cases: only using amplitude, only using phase, using both amplitude and phase in Table 
2. Moreover, we also test the performance of three classification algorithms, SVM, random 
forest (RF) and K-nearest neighbor (KNN) on our system. It is shown in Fig. 12 that SVM 
algorithm performs better than other algorithms. Meanwhile, when we use SVM for 
classification, the accuracy achieves 0.9 and 0.82 with only amplitude or phase while it can 
achieve 0.95 with both amplitude and phase. Therefore, it can be seen that the addition of the 
phase can improve the accuracy of our system. 

 
Table 2. Detection accuracy with three classification algorithms. 

Algorithms Amplitude Phase Amplitude and Phase 
SVM 0.90 0.67 0.95 
RF 0.63 0.77 0.80 

KNN 0.70 0.73 0.88 

6.2.2 Impact of Principal Components 
In our system, the principal components of CSI are obtained for subcarriers selection by 

utilizing PCA. To show the validity of the Principal Component Analysis (PCA) method, we 
test the accuracy of each implemented activity with PCA and without PCA. Fig. 13(a) shows 
that the system accuracy decreased without using PCA algorithm. In addition, in this section, 
we also discuss the impact of the number of selected components. As shown in Fig. 13(b), the 
system achieves better accuracy when the first five principal components are selected. 
However, increasing the number of principal components will not significantly improve the 
accuracy, which also leads to slower computing speed. 
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Fig. 13. The impact of PCA. (a) Comparison of system precision with PCA and without PCA, (b) 

Detection accuracy with PCs. 
 

6.2.3 Impact of Features 
In this experiment, there are multiple activities containing fine-grained activities to be 

classified, and our system cannot achieve expected accuracy with a single statistical feature. 
As a result, we extract multiple features from amplitude and phase and then select more useful 
features to construct the feature matrix according to the performance and the correlation 
between features. In this section, we analyze the impact of different feature and the kind of 
feature on the performance of our system. In addition, we compare the performance of 
different features in two different environments to test the feasibility of features. 
1) Performance of Different Features: 

Fig. 14(a) compares the performance of different features extracted from the amplitude 
of CSI, including variance (Variance), signal entropy (SE), offset of signal strength (Offset), 
interquartile range (IR), median absolute deviation (MAD), normalized standard deviation 
(STD) and duration of human moving (duration). The duration of human moving is a fixed 
value, so we put it in the figure of amplitude features. The result shows that the classification 
accuracy of single feature is around 0.3, and the offset of signal strength can achieve the 
accuracy of about 0.6. Moreover, the performance of single feature extracted from the phase of 
CSI is compared in Fig. 14(b), which shows that the classification accuracy of phase feature is 
slightly lower than the amplitude feature, among which the offset and signal entropy are 
relatively stable in different environments.  
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Fig. 14. Detection accuracy with different features. (a) Amplitude features, (b) Phase Amplitude 
features, (c) Kind of features. 
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Therefore, offset, signal entropy, IR and duration are selected to form the feature matrix 
for the requirement of accuracy in the experiment. We also discuss the impact of the increase 
of the kind of the features, as shown in Fig. 14(c), and it presents that accuracy is not improved 
significantly and even slips a bit in lab2 with the increase of the kind of features. This is 
because not all features can describe human activities in different ways, and different features 
may have similar performance. In addition, since the SVM algorithm is targeted at small 
samples, if the number of samples is large, overfitting may occur. 
2) Impacts of Sliding Window Size  

Fig. 15 illustrates the performance of different sliding window sizes. The performance of 
our system is compared in two different environments. As shown in Fig. 15, the detection 
accuracy increases with the increase of window size in two schemes. With a larger window 
size, we get more feature samples in the time dimension that might mitigate the impact of 
temporal variance, but the rate might will keep stable when the size reaches some threshold.  
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Fig. 15. The impact of different size of sliding window. 

6.2.4 Impact of Different Environment  
In this section, the impacts of different experimental environments on the performance of 

our system are analyzed. We performed the experiment in two laboratories mentioned in 
section 6.1. As shown in Fig. 16, it can be seen that the most of the activities, whether in the 
lab1 with less multipath or in the lab2 with more multipath, can achieve the accuracy of more 
than 0.8, which prove the robustness of our system. In addition, the accuracy of running 
activity is just over 0.7, which is due to the scenario limitations of lab2. In this environment, 
the object can only move in a limited area and cannot perform normal running activities 
because MP and AP are located between desks and cabinets. These limitations lead to the 
possibility that running can be misclassified as an activity such as walking. Meanwhile, sitting 
activity will be identified as sleeping both in two environments because they all have a still 
period. 
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Fig. 16. The impact of different environments.            Fig. 17. The impact of different people. 

6.2.5 Impact of Different People 
The impacts of user diversity on the accuracy of activity recognition in our experiment 

are also evaluated. Five different volunteers varying in age, height, weight and gender are 
recruited. As shown in Fig. 17, the activity classification accuracy of them reach a high level 
and the average accuracy is above 0.85, which proves that this system still performs well to 
different users. 

7. Discussion 
In this section, We will discuss the limitations of the system and some problems in 

application from the following three aspects  
1) Multi-person activities recognition: Our system is designed for recognizing the 

activities of a single person. We find that if only one person moves in the room and the others 
are still, our system can still work. These non-moving people can be considered part of the 
surrounding. However, if the target and other people move at the same time, the reflected 
signals they produce affect each other, making it difficult to distinguish the target's movements. 
Therefore, we consider the single person scenario when applying our system, or the case 
where only one person moves. 

2) Impact of environmental changes: For our system, the premise of activity 
identification is to build a training set of a certain size, which is easily influenced by the 
environment. If you change to a new environment, the system will often require extra effort to 
retrain, which will result in additional burden on the system. For an untrained environment, the 
ability of our system to recognize also changes. 

3) Location and orientation of users: In addition to the above two aspects, the location and 
orientation of target personnel also have an impact on the recognition. For the human activities, 
the differences on the location and orientation of the user could induce differesnt reflection 
paths, resulting in changes in CSI measurements. 

8. Conclusion 
In this paper, a novel human activity detection system based on CSI has been proposed. 

The system overcomes the limitations of traditional systems and achieves better accuracy. In 
addition to the amplitude information, we also extract the phase information using a linear 
transformation. And a series of filters are used to remove the noise of CSI. To solve the 
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problem of subcarriers selection, we employ PCA method and keep the first five principal 
components. Compared to other work, this system focuses on the performance of different 
features on human activity. We discuss the sensitivity of these features to human activity and 
the correlation between them, and finally select several unrelated sensitive features for feature 
matrix. Moreover, we apply three machine learning algorithms to realize activity classification, 
among which SVM has the best performance. The experiment is carried out in two different 
laboratories, and the results confirmed the robustness of our system.  
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